

UAS Collision Avoidance, Navigation, and Target Assignment in a Congested Airspace Using Fuzzy Logic

Brandon Cook, Tim Arnett, & Brett Rich

Undergraduate Students, Department of Aerospace Engineering, AIAA Student Members

Dr. Elad Kivelevitch

Assistant Professor Educator, Department of Aerospace Engineering, AIAA Senior Member

Outline

- Project Objectives & Motivation
- Simulation Environment Description
- Assumptions
- Algorithms
- Results
- Future Work

Project Objectives

- Develop a robust collision avoidance algorithm that allows safe operation of several UAVs in congested airspace
- Assign targets to UAVs using bidding techniques
- Address path planning and navigation issues
- Provide robust solutions in dynamic environments

Motivation

- Finding solutions to these problems allows a better understanding of how multiple UAVs can interact in congested environment and still accomplish their tasks
- Important as UAV applications proliferate (civilian and military)

Simulation Environment

- Operational Area: 96 km12 (8 × 12 km)
- Operational depots
 - 2 for non-clustered targets
 - 1 for clustered targets
- 6 UAVs (3 starting at each depot)
- 40 Targets
- UAV Speed: 100 m/s

Mission Objectives

- Acquire and allocate targets to vehicles
- Control vehicle flight paths to targets
- Avoid obstacles throughout simulation
- Visit all targets in airspace

Simulation Layout

Assumptions

- Level, 2D flight All UAVs at same altitude
- Constant velocity (100 m/s)
- Maximum load factor of n=3.5 for all UAVs
- Vehicles limited to
 - Turn radius: $R \lim_{m \to \infty} = V 2 / g \sqrt{n 2 1} = 100 2$ $m 2 / s 2 / 9.81 m / s 2 \sqrt{3.52 - 1} = 300 m$

 $-\Psi \downarrow max = g/V \sqrt{n^2 - 1}$

- Target "visited" when UAV within 150 m
- Targets are stationary

Simulation Cases

- Static Environment
- Cluster-First Static Environment
- Dynamic Environment

 Priority vs. Non-Priority for each environment

Simulation Cases Static Environment

Simulation Cases Cluster-First Static Environment

Simulation Cases Dynamic environment

Algorithms

- Navigation
- Target Assignment

 Cluster-First Techniques
- Vehicle Prioritization
- Collision Avoidance

Algorithms Collision Detection

Algorithms Collision Avoidance

 $\Psi_{rel} = \Psi_{intruder} - \Psi$

- Provides heading control for vehicles when in range of obstacles (180° Field of View)
 - Overrides target navigation
- Fuzzy system developed based on two inputs:

- Ψ↓rel

- Distance
- Outputs Ψ for vehicle
- If multiple intruders exist, average Ψ output contributions

- Developed two Fuzzy Inference Systems
 - Go In Front
 - Go Behind
- Both have identical inputs, outputs, and membership functions
- Use different rule sets (each have 2 rules)
- Need to decide which FIS to use using filtering techniques

Conflict Scenario Parameters

- Location of intruder
- Direction of travel relative to "ownship"
- Distance to heading intersection point

- Conflict Scenario #1
 - On Right
 - Going Left
 - Closer to Him

Resolution: Go Behind

- Conflict Scenario #2
 - On Left
 - Going Left
 - Closer to Him

Resolution: Go Behind

- Conflict Scenario #3
 - On Right
 - Going Left
 - Closer to Me

Resolution: Go In Front

Conflict Scenario #4

- On Left
- Going Left
- Closer to Me

Resolution: Go Behind

Conflict Scenario #5

- On Right
- Going Left
- Closer to Him

NOTE: Similar Heading

Resolution: Go Behind

Algorithms Collision Avoidance – FIS Logic

Algorithm Testing Collision Avoidance

Algorithm Testing Collision Avoidance – Priority

Algorithm Testing Collision Avoidance – Priority

Algorithm Testing Collision Avoidance – No Priority

Results

Results Static Environment

Results Cluster First

Results Static Environment

Results Dynamic Environment

Results Cluster First

Results Avoidance – Non-Prioritized Vehicles

Results Avoidance – Prioritized Vehicles

Results

Case	Total Flight Hours	Collisions	Collisions/ Flight Hour
Static – Priority	837.6	0	0
Static – No Priority	843.7	0	0
Dynamic – Priority	1599.9	0	0
Dynamic – No Priority	1637.8	0	0
Cluster – Priority	1297.9	0	0
Cluster – No Priority	1291.8	0	0

Conclusions

- Navigation FIS drives error to zero with little overshoot and smooth output
- Bidding based purely on distance not the best solution overall
 - Robust to changing number of targets such as the dynamic case shown
 - Purposefully chosen to increase probability of collisions
- Verified that using Fuzzy Logic for collision avoidance provides a robust solution to dynamic environments
 - Has few and simple inputs and rules
 - Had 100% success rate for all simulation environments and testing (7,509 Flight Hours)
 - Ability to adapt to a dynamic environment

Conclusions

- Fuzzy logic is an effective tool for collaboration between autonomous agents in a time-critical spatio-temporal environment
- A completely autonomous, robotic, intelligent swarm would be useful in applications including:
 - Safe Integration of UAVs into the National Airspace
 - Space robotics
 - Celestial body exploration and colonization
 - Homeland security
 - Disaster relief programs

Future Work

- Navigation
 - Already robust but could explore taking subsequent targets into account
- Target Assignment/Route Planning
 - Better route planning options (2 opt, Concorde) for within cluster areas and in dynamic environments
- Avoidance
 - Fuzzy avoidance system can be ramped up for heterogeneous systems (different closure rates and vehicle turning radii)
 - Verify for several-agent conflict scenarios (3 or more)
 - Test algorithms on real flight paths
- Environment
 - Add third dimension (altitude)
 - Introduce static obstacles (no fly zones)
 - Communication limitations/dropouts
 - Human Interaction

Acknowledgements

This presentation was made possible in part by a Travel Grant from the Gerald A. Soffen Fund for the Advancement of Space Science Education

For more information, visit http://SoffenFund.org

References

1. Mitchell, S., Cook, B., and Cohen, K., "Fuzzy Logic Inferencing for Pong", *Logic Programming: Theory, Practices and Challenges*. Nova Science, 2014.

2. Sameh, A., "Clustering," *CS500 - Data Mining* [online lecture], URL: http://info.psu.edu.sa/psu/cis/asameh/cs-500/dm13-clustering.ppt [cited 19 April 2014]

Questions?

Backup Slides

Fuzzy Logic

- Allows for decision making in a manner which resembles human-like reasoning
- Utilizes linguistic reasoning
- Common terms
 - Inputs
 - Rules
 - Outputs
 - Membership Function
 - Fuzzy Inference System (FIS)
 - Fuzzy Set

Fuzzy Inference System

Algorithms Navigation

- Provides control for vehicle heading towards current target
- Proportional and fuzzy controllers developed
 - Both very effective, chose Fuzzy for sim
 - Based on $\Psi \downarrow error$ input
- Drives $\Psi \downarrow error$ to zero

Algorithm Testing Navigation

Algorithm Testing Navigation

Algorithm Testing Navigation

Algorithms Target Assignment

Algorithms Cluster-First Technique - KMEANS

Algorithms Priority Assignment

- UAV closest to its target gets assigned highest priority
 - Does not ever deviate from its flight path
- Next closest UAV is assigned second highest priority (etc.)
- Lowest priority avoids ALL other UAVs

Algorithms Navigation– FIS Logic

Algorithms Navigation – FIS Surface

Algorithm Testing Collision Avoidance – Priority

Algorithms Collision Avoidance – Go Behind Surface

Algorithms Collision Avoidance – Go In Front Surface

Results Static Environment & Prioritized Vehicles

