

A Lunar Volatiles Miner

Matthew E. Gajda, Gerald L. Kulcinski, John F. Santarius, Gregory I. Sviatoslavsky, and Igor N. Sviatoslavsky

> Engineering Physics Department University of Wisconsin – Madison

> > Tuesday, March 7

Earth & Space 2006

Outline

- Introduction
- Background
- Design Parameters
- Mark III Overview
- Mark III Schematics
- Results
- Conclusion

- Excavate lunar regolith
- Sort regolith and process small fines (< 100 μ m)
- Heat small fines to 700 °C
 - Solar wind volatiles extracted: H_2 , ⁴He, ³He, CO₂, CO, CH₄, N₂, H₂O
- Store volatiles

Background*

- Mark II designed in early 1990's
 - Empty Mass: 18 tonnes
 - Power usage: 200 kW_e
- Mine 1 km², 3 m deep, per year
- Extract 1650 kg of volatiles every Earth day

*Sviatoslavsky, I. N. (1993 February). *The Challenge of Mining He-3 on the Lunar Surface: How All the Parts Fit Together*. Proceedings of Space 94, The 4th International Conference and Exposition of Engineering, Construction and Operations in Space, Albuquerque, NM

Volatiles Extracted

- Life support
 - Atmosphere
 - Water
 - Food
- Water support for over 750 inhabitants per miner

Mass of Volatiles Extracted (tonnes/yr)		
H ₂ O	108.9	
N_2	16.5	
CO_2	56.1	
H_2	201.3	
⁴ He	102.3	
CH_4	52.8	
CO	62.7	
³ He	0.033	

Mark III Design Goals

- Only designed the miner
- Same processing capabilities as Mark II
- Empty Mass: < 10 tonnes
- Gas loss: < 10%
- Base camp maximum of 10 km away
- Can drive on 20° side-slope

Mark III Components*

*Enclosure, solar collector, and RF rectenna not shown

Regolith Flow Schematic

Volatile Flow Schematic

Energy Overview

- Regolith Heater energy
 - Beamed concentrated solar energy
 - 12.3 MW thermal
- Miner Electric power
 - Beamed radio frequency (RF) waves
 - Overall RF conversion efficiency ~50%

Results

- Gas loss: 9.9%
- Can handle 30° side-slope
- Size:
 - Length: 13.5 m
 - Width: 5.4 m
 - Height: 4.9 m
- Mass: 9.7 tonnes
- Power Usage: 350 kW_e

Mass Evenly Distributed

Volatile Storage Dominates Power Usage

Mark III Compared to Mark II

	Mark II	Mark III
Internal Pressure	0.1 MPa	0.015 MPa
Gas Storage Tank Pressure	15 MPa	20 MPa
Size	19.7 m × 10 m × 10 m	13.5 m × 5.4 m × 4.9 m
Mass	18 tonnes	9.7 tonnes
Electrical Power Usage	200 kW _e	350 kW _e

Conclusion

- Cut the mass by nearly half
- Retained capabilities of Mark II
- Categorized mass and power
- Identified areas of improvement

Acknowledgements

- Funding
 - Walter E. Kistler
 - Gerald A. Soffen Memorial Fund for the Advancement of Space Science Education
 - www.nasa-academy.org/soffen
- Technical Assistance
 - Ron Ross (JPL)
 - Harrison H. Schmitt

Questions?

