# Learning from space-based telemedicine systems to support spinoffs for Earth-based healthcare

### Golda Nguyen

72<sup>nd</sup> International Astronautical Congress E5 – 32<sup>nd</sup> IAA Symposium on Space and Society Session 2 – Is Space R&D Truly Fostering a Better World for Our Future?



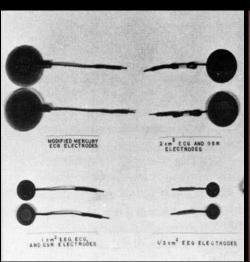
### 60 years of human spaceflight



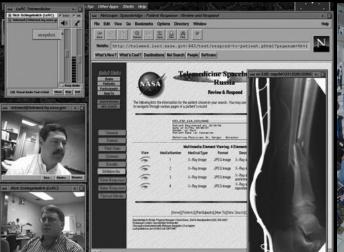




### 60+ years of telemedicine in space and on Earth





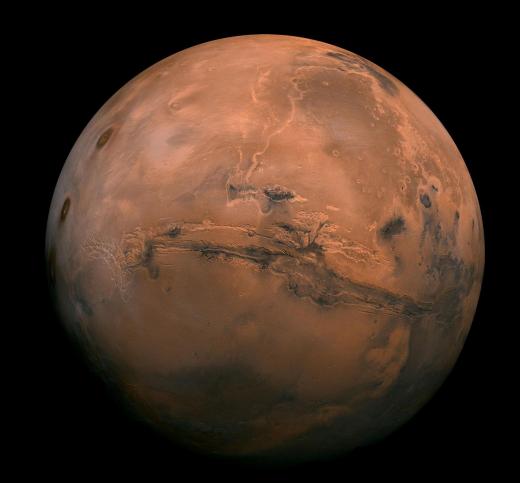




# Decades of innovations and spinoffs from space telemedicine R&D

- Biomedical sensing miniaturization and remote monitoring
- Telecommunications infrastructure development
- Remote diagnostics and treatment development
- Remote medical operations and autonomy advancement














### Deep space missions will face unique challenges



### **Challenges & Constraints**

- Communication delays with Earth
- Inability to return to Earth quickly
- On-board technology limitations
- Limited infrastructure and supplies
- Limited medical expertise

#### **Needs**

- Increased autonomy
- Effective tools and systems on-board for real-time support
- Asynchronous operations with Earth



## Shared challenges and needs for many communities on Earth...



### **Challenges & Constraints**

- Communication delays with providers
- Inability to seek immediate care
- Technology limitations
- Limited infrastructure and supplies
- Limited medical expertise

#### **Needs**

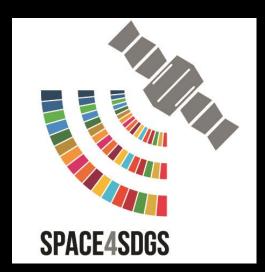
- Increased autonomy
- Effective tools and systems at-home for real-time support
- Asynchronous operations with remote provider



### Telemedicine lessons to be shared...

### **Sharing knowledge on:**

- Medical procedures and operations
- Tools, technologies, and mediums for care (diagnosis, treatment, prevention)
- Telecommunications tools and infrastructure
- Capacity building and technology transfer mechanisms


### Telemedicine can support healthcare access for:

- Remote or rural patients
- Communities with health care provider shortages
- Communities with limited, intermittent, or unreliable telecommunications
- Patients who may not speak the same language as their providers



# Various entities fostering space and Earth health collaborations

- United Nations Office of Outer Space Affairs Working Group on Space and Global Health
- Space Generation Advisory Council Space Medicine and Life Sciences Project Group
- International Academy of Astronautics Space Life Sciences Study Group
- International Space Life Sciences Working Group
- · Research collaborations across space agencies, academia, industry, government













# **UNOOSA-NASA Memorandum of Understanding (2020)**

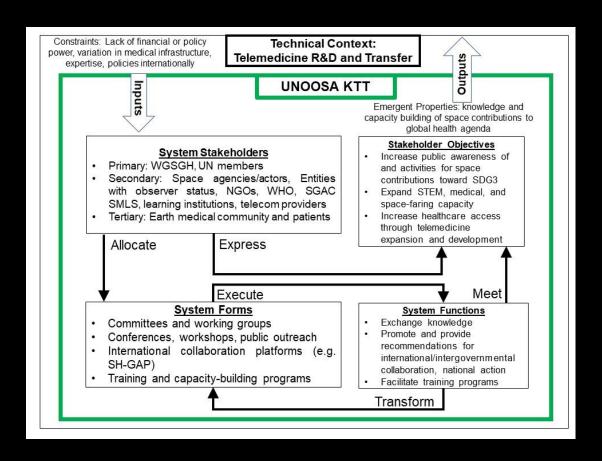
"To provide a framework for cooperation... in expanding opportunities to enjoy the benefits of space-based activities and exploration to a wider group of Nations."

#### Collaboration currently focused on Earth/climate sciences and outreach:

- Capacity building
- Environmental and ecological management
- Natural resource and agricultural monitoring
- Disaster risk reduction and management
- Promoting youth engagement in STEM

#### But there are additional opportunities for collaboration on health:

- Health and life sciences
- Medical capacity building






# Analyzing how we share knowledge and technology using system architecture

### NASA and UNOOSA can be viewed as systems for knowledge and tech transfer

- Stakeholders: transfer agents, beneficiaries
- Objectives: space, health capacity building
- Forms of transfer: policy, outreach, licensing
- Functions: exchange knowledge, disseminate resources, invest in R&D
- Constraints: policy, infrastructure limitations
- Outputs: increased STEM, space capacity

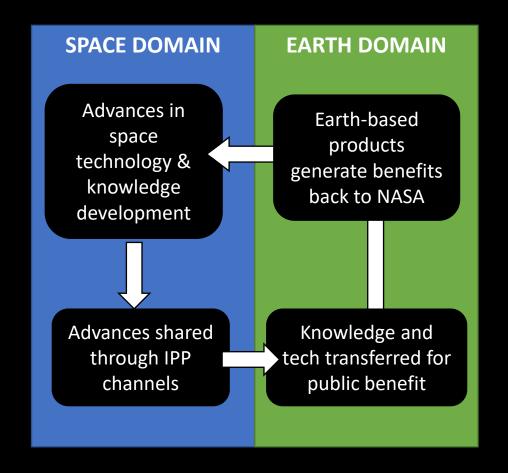


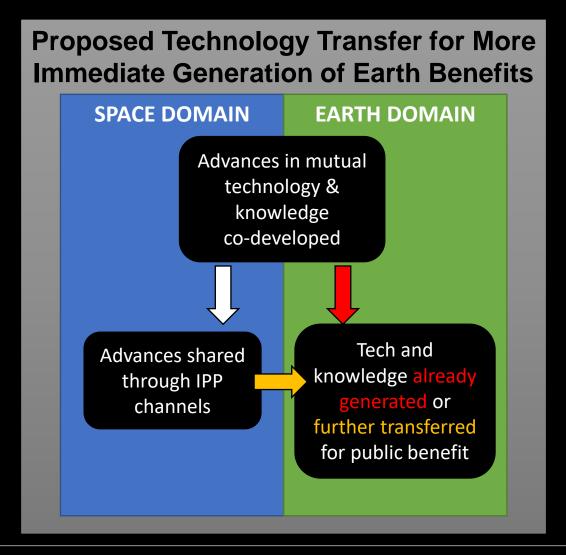


### **Current challenges**

### Knowledge access and transfer challenges

- Communication and awareness of mutual Earth and space benefits from space health R&D
- Balancing medical privacy and access to research data
- Research/knowledge siloes lack of access and difficulty in translating knowledge across contexts
- Difficulty in coordination across interdisciplinary, international entities


### **Development timelines for space telemedicine**


- Balancing development of Moon telehealth architectures vs. Mars telehealth architectures
- Inability to "test like you fly, fly like you test" asynchronous telemedicine has not been tested in actual spaceflight



### Traditional vs. Proposed Transfer Methods

#### **Traditional Technology Transfer**







# Opportunities to continue and expand space-Earth collaboration

- Expansion of telecommunications access through new modalities satellite constellations may help expand infrastructure
- Increasing commercial/civilian access to space increasing knowledge of different types of people in space, expanding design envelopes for telemedicine tools, and accelerating development
- Telemedicine expansion during COVID-19 immediate opportunities for co-development of public health and deep space health solutions

Space telemedicine R&D can actively support advancing telemedicine efficacy and access for Earth-based communities.





