Development and Validation of a Multidisciplinary Spacesuit Model

Nicole Jordan Massachusetts Institute of Technology 44th AIAA Aerospace Sciences Conference and Exhibit January 12, 2006

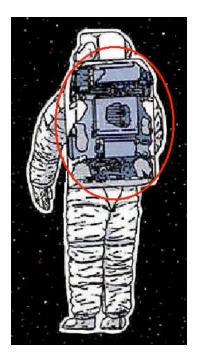
Outline

- Why a Spacesuit?
- Model Description
- Subsystem Details
- Model Validation
- Optimization Preview
- Conclusion
- Acknowledgment

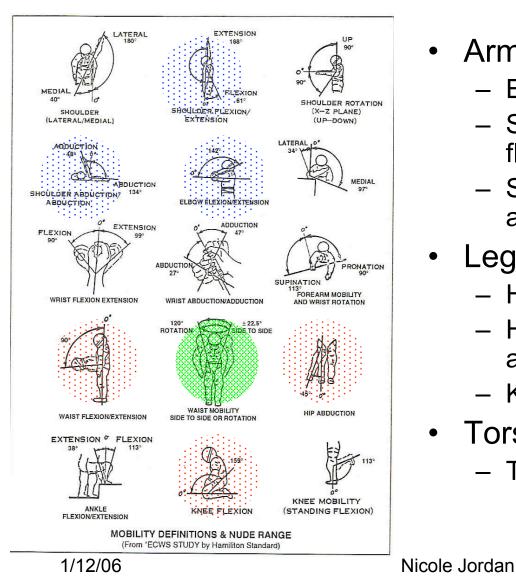
Spacesuits 101

- Why do we need a spacesuit?
 - Regulate temperature
 - Provide oxygen for breathing
 - Pressurized environment
- Important issues to consider
 - Mobility
 - Mass
 - Stowage Volume
 - Pre-breathe time

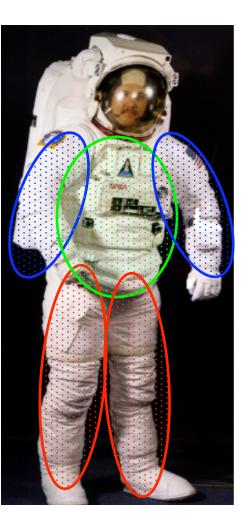
Model Overview


Nicole Jordan

Spacesuit Garment
Mobility

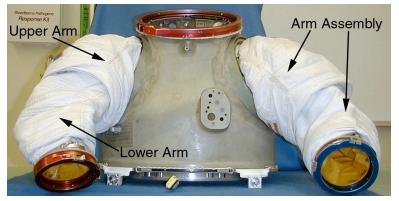


- Primary Life Support System (PLSS)
 - O2 Flow
 - Thermal Regulation


– Power

Mobility Subsystem

- Arms
 - Elbow flexion
 - Shoulder flex/ex
 - Shoulder ad/abduction
- Legs
 - Hip flexion
 - Hip ad/abduction
 - Knee flexion
- Torso •
 - Torso rotation

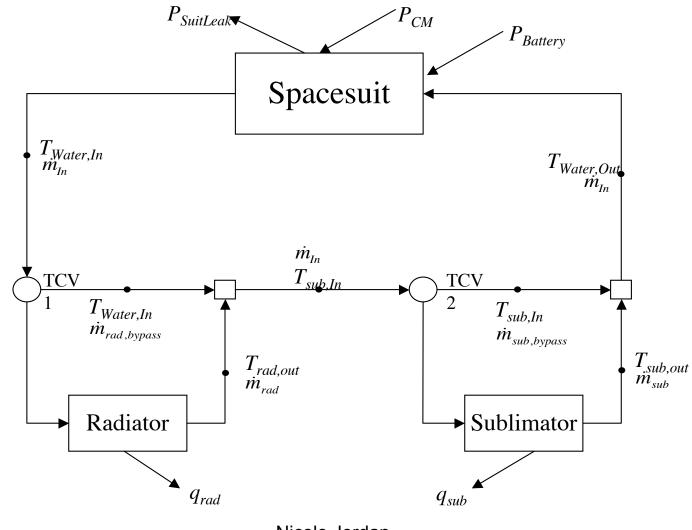


5

Mobility Subsystem

- Mobility = f(Range of Motion, Torque)
- Empirical and Physical Model

0	All Soft Suit		
0.3	HUT, Soft Legs, Soft Arms (EMU)		
0.5	HUT, Soft Legs, Hard Arms		
0.8	HUT, Hard Legs, Soft Arms		
1	All Hard Suit (AX-5)		



 $mobility = w_{arms} \left(-\sum ROM_{arms} + \sum Torque_{arms}\right) + w_{legs} \left(-\sum ROM_{legs} + \sum Torque_{legs}\right) + w_{torso} \left(-\sum ROM_{torso} + \sum Torque_{torso}\right)$

Thermal Subsystem

1/12/06

Nicole Jordan

Power Subsystem

- Given battery energy density, battery volumetric density, and power needs of suit, model calculates mass and volume of power subsystem
- Technology options modeled: NiCd Batteries, NiH₂ Batteries, Regenerative Fuel Cells, NiMH Batteries, Lithium-Ion Batteries, AgZn Batteries, Li-Solid Polymer, Electrolyte, Li-Solid Polymer, Inorganic Electrolyte
- Mass calculation includes supporting hardware:

$$m_{PMAD} = 0.02 * P_{demand} + 0.025 * P_{demand}$$

Oxygen Subsystem

- Models oxygen ventilation loop
- Primary determinant of backpack geometry
- CO₂ technologies modeled:
 - LiOH (single use)
 - Metox (multi-EVA use)

Model Validation

- Validated at the system and subsystem level
- Integrated model validated against the Extravehicular Mobility Unit (EMU) currently used on the ISS

Output	EMU	Model	% Error
Overall Mass (kg)	53.69	53.72	0.06%
Pre-Breathe Time (hr)	4	4.67	16.75%
02 Tank Volume	0.0079	0.0073	7.59%
Sublimator Water (kg)	3	2.9	3.33%
Battery Mass (kg)	6.81	6.67	2.06%

Model Interactions

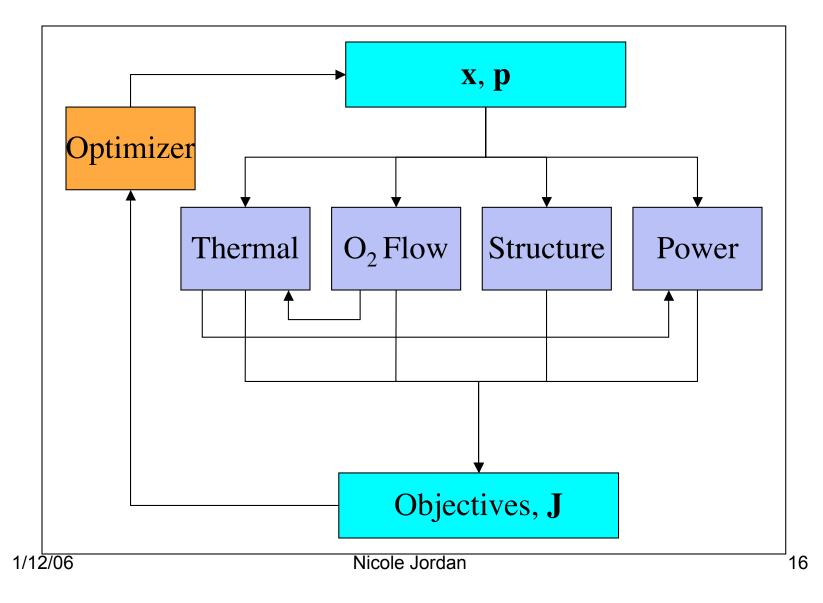
S/O	Mass	Volume	PBT	Mobility
Oxygen	+	+	++	++
Thermal	+	+	-	-
Structures	++	++	++	++
Power	+	+	_	-

- indicates no correlation
- + indicates slight correlation
- ++ indicates strong correlation

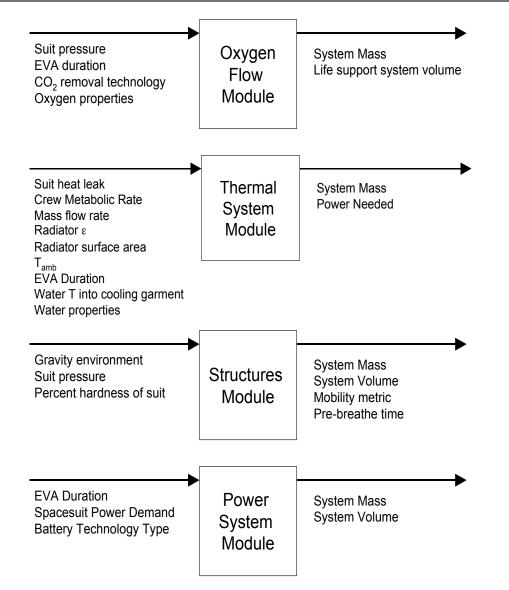
Multi-Objective Optimization

- Four-Objective Optimization using an *N*-Branch Tournament Genetic Algorithm (GA)
- 4 Design Variables
 - $[x_1, x_2, x_3, x_4]$ = [Pressure, Hardness, Power Technology,CO₂ Removal Technology]
- 4 Objectives
 - Minimize(Mass)
 - Minimize(Stowage Volume)
 - Minimize(Pre-breathe Time)
 - Maximize(Mobility) → Minimize(Mobility Metric)
- Hyper-Space Diagonal Counting (HSDC) Visualization Method

Conclusions


- First attempt at a multidisciplinary spacesuit model
- Has potential to be a very valuable tool in the design of future spacesuits
- Need to increase the fidelity of model
- In the future, we will use the model to investigate commonalities between Mars, Moon, and micro-gravity spacesuits

Acknowledgment


The Soffen Fund Travel Grant provided partial financial support for travel to this conference.

Back-up Slides

Model Description

Model Description

1/12/06