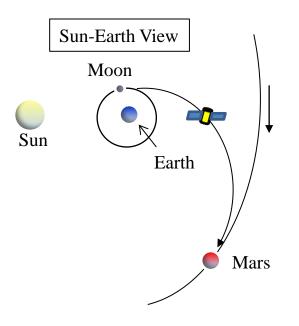


Access to Mars from Earth-Moon Libration Point Orbits: Manifold and Direct Options

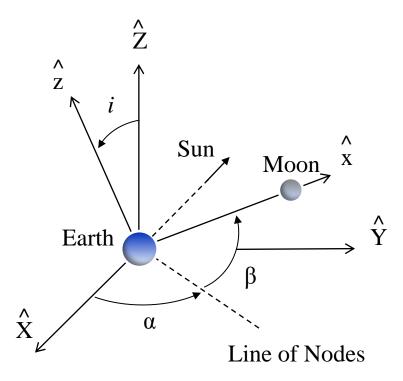
Masaki Kakoi Kathleen C. Howell David Folta

Suggested EML₂ module Image: NASA

Objectives

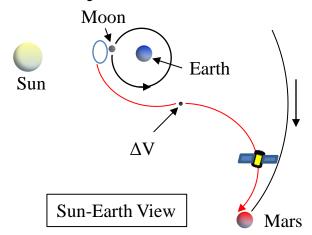

Development of general procedure:

- Transfers from EM L₁/L₂ halo orbits to Mars
 - System model
 - EM manifold transfers
 - SE manifold transfers
 - Direct transfers
- Transition to higher fidelity model



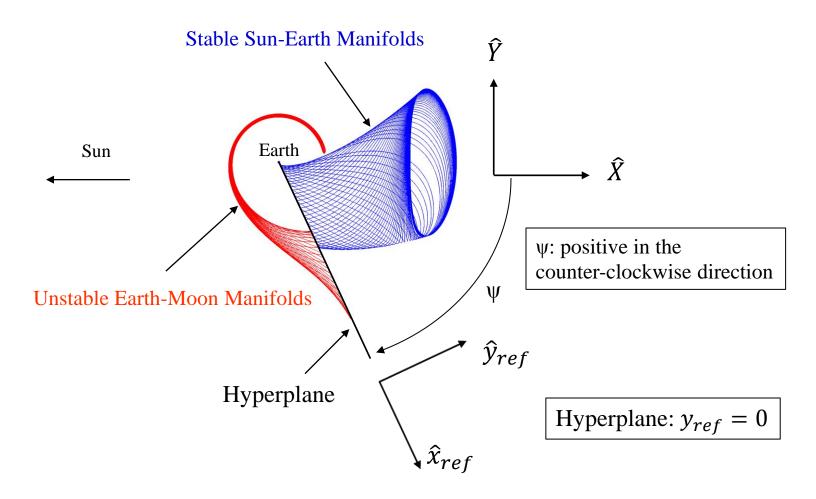
System Model: Five-Body Problem

- Blended Sun-Earth-Moon model
 - Circular Restricted Three-Body Problems
 - Body two 3-1-3 Euler angle sequence
 - α : longitude of ascending node
 - i: inclination 5°
 - β : argument of latitude
- Mars: Ephemeris location



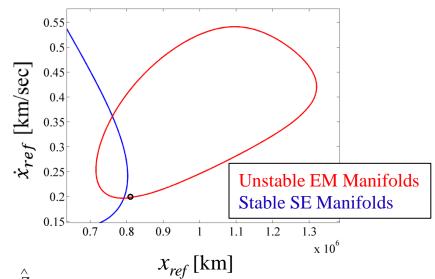
Scenario 1:

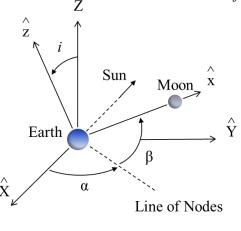
Sun-Earth Manifold Transfers

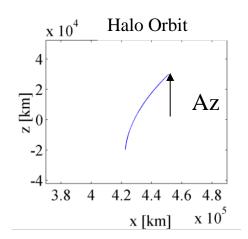

- Scenario 1:
 - Earth-Moon halo orbit to Sun-Earth system
 - Manifold-to-manifold transfers
 - Sun-Earth system to Mars
 - Target ephemeris Mars

- Requirements:
 - Construct manifold-to-manifold transfer scheme
 - Construct Mars targeting scheme

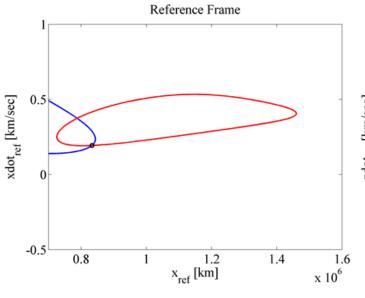
Defining Reference Frame

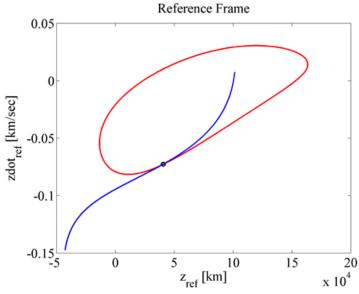


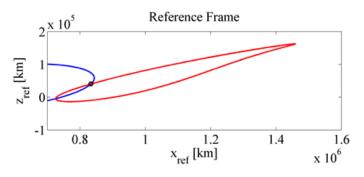




- Three phase plots
 - $-\dot{x}_{ref}$ vs x_{ref}
 - z_{ref} vs x_{ref}
 - $-\dot{z}_{ref}$ vs z_{ref}
 - Fix \dot{x}_{ref} , x_{ref} , z_{ref} , \dot{z}_{ref}
- 5 components fixed
- Jacobi constant
 - Fix \dot{y}_{ref}
- Parameters
 - $-\alpha$, β , ψ , EMAz, SEAz



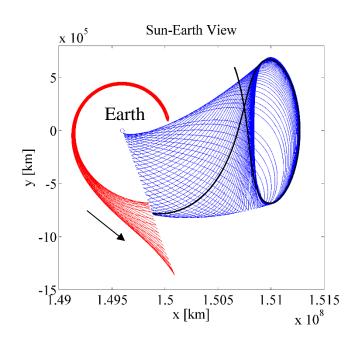


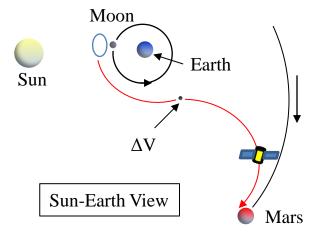

Phase Plots:

α, β, ψ, EMAz, SEAz Corrected

- Maneuver-free manifold-tomanifold transfers computed
 - Red curves and blue curves
 - Intersect at black circle
- Applicable to transfers between EML₂ and SEL₁/L₂

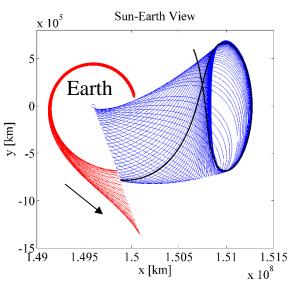
Scenario 1:



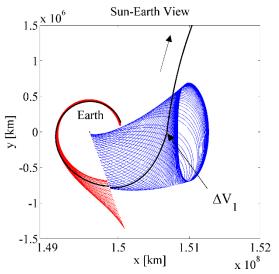

Sun-Earth Manifold Transfers

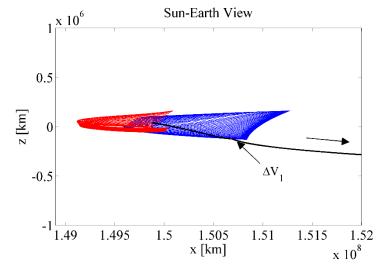
- Requirements:
 - Construct manifold-to-manifold transfer scheme

Construct Mars targeting scheme



Scenario 1 Guidelines: Sun-Earth Manifold Transfer

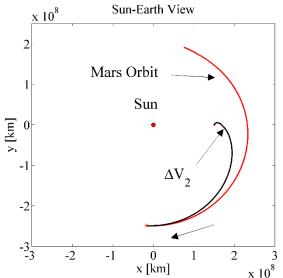

- Possible departure dates:
 - Location of the Moon: α , i, β
- Final location of Mars
 - Time-of-flight (TOF): Hohmann transfer
- Targeting Mars
 - Initial guess: Hohmann transfer
 - TOF and ΔV
 - Multiple shooting method
 - Allow two maneuvers

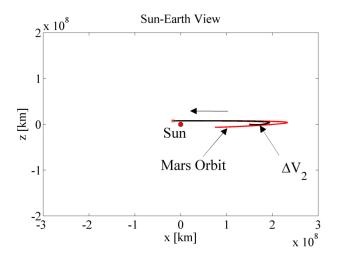


Scenario 1 Sample Results:

Sun-Earth Manifold Transfer

Departure Date: June 16 2022

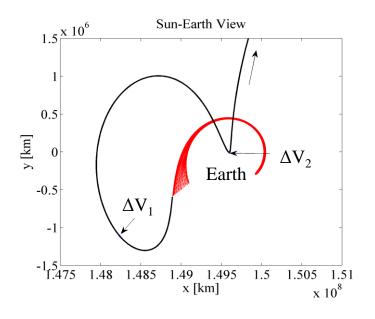

 ΔV : 3.495 km/sec


TOF: 350 days

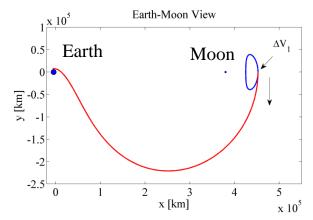
Planar Hohmann Approx.:

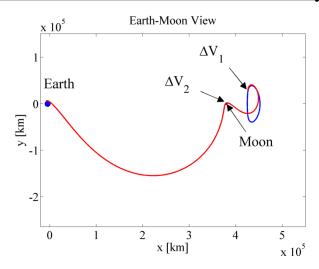
 ΔV : 2.765 km/sec

TOF: 349 days



Additional Scenarios


Scenario 2: Earth-Moon manifold transfers


Development of general procedures

- Total: 4 scenarios
- EML_1/L_2 departures
- Transfers available every 2 years

Scenario 3: Direct transfers

Scenario 4: Transfers with lunar flyby

Sample Results:

Blended & Higher Fidelity Models

Higher fidelity model:

- Ephemeris: Sun, Earth, Moon, Mars

Scenario	Model	EMAz [km]	Departure Date	Total ΔV [km/sec]	TOF [day]
SE Manifold Transfer	Blended	25,000	June 16 2022	3.495	350
	Ephemeris	25,000	June 16 2022	3.645	350
EM Manifold Transfer	Blended	25,000	July 3 2028	0.759	380
	Ephemeris	33,000	July 3 2028	0.852	376
Direct Transfer	Blended	25,000	Nov. 4 2026	1.593	272
	Ephemeris	46,000	Nov. 3 2026	1.631	262
Transfer with Lunar Flyby	Blended	25,000	Dec. 1 2028	1.150	249
	Ephemeris	27,000	Dec. 1 2028	1.423	249

Concluding Remarks

Development of general procedure

- Transfers from EML₁/L₂ halo orbits to Mars
 - Blended model constructed
 - Four scenarios introduced
 - Manifold and direct options
 - Maneuver-free transfers between EM and SE systems
 - Results transitioned to higher fidelity model

Access to Mars from Earth-Moon Libration Point Orbits: Manifold and Direct Options

Suggested EML₂ module Image: NASA

Acknowledgement

Gerald A. Soffen Memorial Fund for the Advancement of Space Science Education