Probabilistic AHP and TOPSIS for Multi-Attribute Decision-Making under Uncertainty

Jarret M. Lafleur

Space Systems Design Laboratory Georgia Institute of Technology

Paper #1135 Session 13.06: Systems Architecture, Engineering and System of Systems

IEEE Aerospace Conference Big Sky, Montana

March 9, 2011

Daniel Guggenheim School of Aerospace Engineering Est. 1930 Space Systems Design Laboratory

Est. 1995

GeorgiaInstitute of **Tech**nology

Making informed design decisions in the face of uncertainty is a common challenge in aerospace systems engineering.

GeorgiaInstitute of Technology

Georgialnstitute of **Tech**nology

Common Tools for Multi-Attribute Decision-Making

- Analytic Hierarchy Process (AHP)
- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

AHP

- Developed by Saaty in mid-1970s
- Permits both prioritization of objectives and selection of designs based on a *structured approach of pairwise comparisons*
- Matrices are reciprocal and permit decision-maker(s) to evaluate consistency of preferences
- Using AHP for concept selection equivalent to simple additive weighting
- Conventional AHP is deterministic

	Objective #1	Objective #2	Objective #3	Objective #4		Objective #n			Priority Vector
Objective #1	1	2	5	2	Ì	1/3	\mathbf{N}		0.251
Objective #2	1/2	1	7	1		1		\boldsymbol{r}	0.208
Objective #3	1/5	1/7	1	1/5	ŕ	1/8	V	(0.036
Objective #4	1/2	1	5	1		1		(0.193
Objective #n	3	1	8	1		1		(0.312
	Decian #1		Design #2	Decian #3		Design #4	Design #k		
[Desigi	n #1	1	1		7		3	1/7
				1 1					
C	Desig	n #2	1	1		3		2	3
	Desigi Desigi	n #2 n #3	1 1/	1 7 1.	/3	3		2 1/9	3 1/2
	Desigi Desigi Desigi	n #2 n #3 n #4	1 1/ 1/:	7 1. 3 1.	/3 /2	3 1 9		2 1/9 1	3 1/2 5

Common Tools for Multi-Attribute Decision-Making

- Analytic Hierarchy Process (AHP)
- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS

- Developed by Yoon & Hwang, 1980
- Scores alternatives based on euclidean distances from positive and negative ideal designs

$$C_{i} = \frac{S_{i}^{-}}{S_{i}^{+} + S_{i}^{-}} = \frac{\left\|\vec{d}_{i} - \vec{d}_{-}\right\|}{\left\|\vec{d}_{i} - \vec{d}_{+}\right\| + \left\|\vec{d}_{i} - \vec{d}_{-}\right\|}$$

- Intuitive "physical" meaning
- Reflects diminishing marginal rates of substitution
- Does not provide method for weighting objectives (can be coupled with AHP)

TOPSIS Objective Space

Objective

Facilitate informed decisions under uncertainty in decision-maker preferences by developing probabilistic adaptations of AHP and TOPSIS

Example Aerospace Application

Choose *launch vehicle* and circular orbit for a small (400 kg), responsive military reconnaissance satellite

- Targeted sensor with 1° FOV angle and 1.0 m GSD at 400 km reference altitude
- 110 kg/m² ballistic coefficient, minimal propellant available for orbit maintenance

Modeled after TacSat-2 Launched Dec. 16, 2006

Georaia off**lech**moloan

NASA (left)

Methodology Summary

Step 1: Generate List of Objectives/Attributes

What does the decision-maker wish to achieve?

Attribute	Units	Preferred Value
Launch Margin	percent	High
Launch Cost	\$FY2009M	Low
Launch Reliability	percent	High
Image Rield & Kiew Asemple	km²	High
Distance	km	Low
Mean Worst-Case Daily Data Latency	hours	Low
Mean Daily Coverage Time	hours	High
Orbit Lifetime	years	High

Step 2: Generate List of Candidate Designs

With what design choices can these objectives be influenced?

Design Variable	Options Considered
Launch Vehicle	Falcon 1, Falcon 1e, Pegasus XL, Pegasus XL with HAPS, Taurus 2110, Taurus 2210, Taurus 3110, Taurus 3210, Minotaur I, Minotaur IV, Athena I, Athena II
Orbit Altitude (km)	200, 300, 400, 600, 1000, 1500, 2000
(deg.)	0, 10, 20, 30, 40, 50, 60, 70, 80, 90

Georgialnstitute of Technology

Step 3: Evaluate each Design's Performance with respect to each Attribute

Ч	

Attribute			Units	Evaluat	tion Teo	chnique	•						
Launch Margin		percent \$FY2009 M Percent			LV RSE	Es							
Launch Cost					LV Database			ı ′	Filters:				
Launch Reliability								L	aunc	h Margir	ו >0% a	nd <100%	
Image Field of View Area			km²	C	Geometry				Orbit Lifetime >3 months				
Distance			km Geometry										
Mean Worst-Case Daily Data I		De	sign Defir	nition				Des	sign Attr	ibutes			
Mean Daily Coverage Time	Design No.	Orbit Alt. (km)	Orbit Inclin. (deg.)	Launch Vehicle	Launch Margin (percent)	Launch Cost (\$FY09M)	Launch Reliability (percent)	Image FOV Area (km²)	lmage Nadir GSD (m)	Mean Worst-Case Daily Data Latency (brs)	Mean Daily Coverage Time (brs)	Orbit Lifetime (yrs)	
	1	400	30	Pegasus XL	0.1	22.4	93.6	38.3	1.0	14.8	0.62	0.5	
	2	400	30	Minotaur I	31.9	22.4	97.9	38.3	1.0	14.8	0.62	0.5	
		400	30	Athena I	86.4	42.4	95.2	38.3	1.0	14.8	0.62	0.5	
EQ Candida	ato	400	40	Minotaur I	27.4	22.4	97.9	38.3	1.0	14.1	1.00	0.5	
59 Califulda		400	40	Athena I	76.9	42.4	95.2	38.3	1.0	14.1	1.00	0.5	
Designs		400	50	Minotaur I	22.8	22.4	97.9	38.3	1.0	12.8	1.18	0.5	
		J	50	Athena I	67.1	42.4	95.2	38.3	1.0	12.8	1.18	0.5	
	8		60	Minotaur I	18.0	22.4	97.9	38.3	1.0	11.7	1.10		
	9	\backslash	60	Athena I	56.9	42.4	5.2	38.3		11.7	1.10	0.5	
		V			71 F		V					V <u>^ 5</u>	

Georgialnstitute of Technology

Step 4: Populate AHP Prioritization Matrix, including Uncertainties

Baseline AHP Prioritization Matrix	High Launch Margin	Low Launch Cost	High Launch Reliability	High Image FOV Area	Low Image Nadir GSD	Low Mean Worst-Case Daily Data Latency	High Mean Daily Coverage Time	High Orbit Lifetime
High Launch Margin	1	1/3	3	5	1/6	1/3	1/2	3
Low Launch Cost	3	1	5	7	1/4	1/3	1/2	5
High Launch Reliability	1/3	1/5	1	3	1/8	1/5	1/4	1/5
High Image FOV Area	1/5	1/7	1/3	1	1/9	1/8	1/7	1/7
Low Image Nadir GSD	6	4	8	9	1	4	5	7
Low Mean Worst-Case Daily Data	3	3	5	8	1/4	1	2	5
High Mean Daily Coverage Time	2	2	4	7	1/5	1/2	1	3
High Orbit Lifetime	1/3	1/5	5	7	1/7	1/5	1/3	1

*Verbal Description of Importance Ratings**

1 = Equal 3 = Weak 5 = Strong 7 = Very Strong 9 = Absolute

* T.L. Saaty, The Analytic Hierarchy Process, New York: McGraw-Hill, 1980.

Georgialnstitute of Technology

Step 4: Populate AHP Prioritization Matrix, including Uncertainties

$$v(a) = \begin{cases} \frac{2a-1}{a} & \text{if } a < 1\\ a & \text{if } a \ge 1 \end{cases}$$
$$a(v) = \begin{cases} \frac{1}{2-v} & \text{if } v < 1\\ v & \text{if } v \ge 1 \end{cases}$$

Uncertainty Matrix (*Virtual Scale*)

High Launch Margin	
Low Launch Cost	
High Launch Reliability	
High Image FOV Area	
Low Image Nadir GSD Low Mean Worst-Case Daily Data	
Latency High Mean Daily Coverage Time	
High Orbit Lifetime	

'ix	High Launch Margin	_ow Launch Cost	High Launch Reliability ₊	High Image FOV Area	₋ow Image Nadir GSD	₋ow Mean Worst-Case Daily Data Latency	High Mean Daily Coverage Time	High Orbit Lifetime
	0	3	т. Б	2	2	2.5	2.5	Z. 5
		0	Р. 5	2	2	3	3.5	4
			ŏ	3	1	1.5	1.5	ว. ภ
				0	0	0.5	0.5	۲. Б
					0	2	2	ዋ. መ
4						0	0.5	ው. 5
							0	P. 5
								ŏ

Georgialnstitute of Technology

Step 4: Populate AHP Prioritization Matrix, including Uncertainties

<i>Probabilistic Prioritization Matrix (Virtual Scale)</i>	High Launch Margin	Low Launch Cost	High Launch Reliability	High Image FOV Area	Low Image Nadir GSD	Low Mean Worst-Case Daily Data Latency	High Mean Daily Coverage Time	High Orbit v_{ij} $v_{ij} - u_{ij}$ $v_{ij} + u_{ij}$
High Launch Margin	1	X _{1,2}	X _{1,3}	X _{1,4}	<i>X</i> _{1,5}	X _{1,6}	X _{1,7}	
Low Launch Cost	2-X _{1,2}	1	X _{2,3}	X _{2,4}	X _{2,5}	X _{2,6}	X _{2,7}	
High Launch Reliability	2-X _{1,3}	2-X _{2,3}	1	X _{3,4}	X _{3,5}	X _{3,6}	X _{3,7}	$X_{u} \sim Triangular(v_{u} - u_{u}, v_{u}, v_{u} + u_{u})$
High Image FOV Area	2-X _{1,4}	2-X _{2,4}	2-X _{3,4}	1	X _{4,5}	X _{4,6}	X _{4,7}	>
Low Image Nadir GSD	2-X _{1,5}	2-X _{2,5}	2-X _{3,5}	2-X _{4,5}	1	X _{5,6}	X _{5,7}	X _{5,8}
Low Mean Worst-Case Daily Data Latency	2-X _{1,6}	2-X _{2,6}	2-X _{3,6}	2-X _{4,6}	2-X _{5,6}	1	Х _{6,7}	X _{6,8}
High Mean Daily Coverage Time	2-X _{1,7}	2-X _{2,7}	2-X _{3,7}	2-X _{4,7}	2-X _{5,7}	2-X _{6,7}	J	
High Orbit Lifetime	2-X _{1,8}	2-X _{2,8}	2-X _{3,8}	2-X _{4,8}	2-X _{5,8}	2-X _{6,8}	2-X	$X_{ii} = 2 - X_{ii}$
								Ji y

Methodology: Monte Carlo Sim

deorgialnstitute of **Tech**nology

For each Simulation:

Step 5: Select an AHP Prioritization Matrix

Step 6: Determine AHP Priority Vector

- **Step 7: Compute TOPSIS Score**
- **Step 8: Record Scores, Ranks of Alternatives**

Dispersed	High La	Low Lau	High La	High Ima	Low Ima	Low Me Daily Da	High Me Coveraç	High Or		Design Definition			ition	Scores according to Baseline Prioritization		
Prioritization Matrix	unch Ma	Inch Cos	unch Re	age FO\	ıge Nadi	an Wors ita Later	e Time	oit Lifetir	Desig No.	n (Orbit Alt. (km)	Orbit Inclin. (deg.)	Launch Vehicle	Closeness, C _i	Rank	
Hatix	ırgir	¥	liab	Ar	G	ş Ç		ne		1	400	30	Pegasus XL	0.5546	27	
	L		ĭiiŧ	ea	SD	ase				2	400	30	Minotaur I	0.5603	23	
										3	400	30	Athena I	0.5574	25	
High Launch Margin	1	1/3	3	5	1/6	1/3	1/2	3		4	400	40	Minotaur I	0.5694	18	
Low Launch Cost	3	1	5	7	1/4	1/3	1/2	5		5	400	40	Athena I	0.5657	21	
High Launch Reliability	1/3	1/5	1	3	1/8	1/5	1/4	1/5		6	400	50	Minotaur I	0.5783	12	
High Image FOV Area	1/5	1/7	1/3	1	1/9	1/8	1/7	1/7		7	400	50	Athena I	0.5739	16	
Low Image Nadir GSD	6	4	8	9	1	4	5	7		8	400	60	Minotaur I	0.5817	11	
Low Mean Worst-Case Daily Data	3	3	5	8	1/4	1	2	5		9	400	60	Athena I	0.5765	14	
Latency High Mean Daily Coverage Time	2	-			1/ 1		-		- 1	0	400	70	Falcon 1e	0.6166	3	
Lish Orbit Lifetime	2				S-			d	1	1	400	70	Minotaur I	0.5970	7	
High Orbit Lifetime	1/3	C.,	\equiv		ν_i	==	11		1	2	400	70	Athena I	0.59	10	
		1		S_i^+	+2	S_i^-	\bar{d}_i	$-\vec{d}_{+}$	1	3	4	ל	Falcon 1e Mir r I	7		

Georgialnstitute of Technology

Georgialnstitute of Technology

Step 9: Visualize and123Review Results

Among the 10,000 Monte Carlo runs, how often does a particular design appear as the best alternative?

Georgialnstitute of **Technology**

Step 9: Visualize and **Review Results** 3 2

Among the 10,000 Monte Carlo runs, how often does a particular design appear among the top N alternatives?

17

16

N = 5

Taurus 2210 - 400 km, 90°

Falcon 1e - 400 km. 90°

Athena I - 400 km, 50°

0.4

Probability of being within the Top 5 Designs

0.6

0.8

0.2

N = 1

Falcon 1e - 400 km, 90°

16

10 u

17

0

0.2

0.4

Probability of being the Top Design

0.6

0.8

r

е

b

m

Ν

n

g

s

е 13

D

7

0

	17		Taurus 2210 - 400 km, 90°											
	16		Falcon 1e - 400 km, 90°											
	13		Falcon 1e - 400 km, 80°											
	10		Falcon 1e - 400 km, 70°											
	11		Minotaur I - 400 km, 70°											
r o	14		Minotaur I - 400 km, 80°											
b	18		Minotaur I - 400 km, 90°											
m	19		Athena I - 400 km, 90°											
N	15		Athena I - 400 km, 80°	-										
n	12		Athena I - 400 km, 70°	_										
g	8		Minotaur I - 400 km, 60°	_										
i	37		Falcon 1e - 600 km, 90°	-										
e	34		Falcon 1e - 600 km, 80°	-										
D	6		Minotaur I - 400 km, 50°	_										
	30	Ī	Falcon 1e - 600 km, 70°	_										
	4	_	Minotaur I - 400 km, 40°	-										
	7	_	Athena I - 400 km, 50°	_										
	9	_	Athena I - 400 km, 60°	-										
	27	_	Falcon 1e - 600 km, 60°	_										
	5	_	Athena I - 400 km, 40°	-										
	24	-	Falcon 1e - 600 km, 50°	-										
	(5	0.2 0.4 0.6 0.8	1										
		Pro	bability of being within the Top 10 Design	s										

Georgialnstitute of Technology

Step 9: Visualize and123Review Results

Among the 10,000 Monte Carlo runs, how often does a particular design appear among the top N alternatives?

KING Georgialnstitute

Step 10: Select Alternative(s)

Considerations

- Did particular design characteristics appear consistently in top designs?
- Is finer discretization on continuous variables necessary, and is there time for a second iteration?
- Is selection intended to result in a single design solution or a *family* of solutions?

Conclusion

- Probabilistic extension of AHP and TOPSIS can facilitate more informed engineering decisions under uncertainty
 - Adds easily interpretable results to characterize effects of uncertainty in preferences
 - May be particularly useful if multiple designs must be selected
 - Demonstrated on practical engineering application
- Comprehensive method consists of 10 steps and 3 segments:
 - Problem Setup: Definition of objectives, priorities, uncertainties, design attributes, and candidate designs; and evaluation of each design with respect to attributes
 - Monte Carlo Simulation: Application of traditional AHP and TOPSIS to thousands of "dispersed" AHP prioritization matrices
 - Results Visualization and Decision-Making: Examination of results through up to four techniques to inform final decision
- Areas for Expansion
 - Incorporation of design attribute uncertainty (model uncertainty)
 - Incorporation of nonsymmetric or non-triangular PDFs

Questions?

Georgialnstitute of Technology

This presentation was made possible in part by a Travel Grant from the Gerald A. Soffen Fund for the Advancement of Space Science Education.

For more information, visit http://www.nasa-academy.org/soffen/travelgrant/

Dr. Gerald Soffen Viking Project Scientist

Jarret M. Lafleur

Ph.D. Candidate School of Aerospace Engineering Georgia Institute of Technology

jarret.m.lafleur@gatech.edu

Georgia Institute of Technology