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Why use numerical methods for solar sail trajectory design?

In search for new solar sail mission concepts, most trajectory work
has been analytical

Numerical tools complement analytical techniques

I May not require advanced knowledge of solution structure

I Expose new solutions

I Necessary for many mission applications

I Suite of tools required to meet different goals
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Exploring future trajectory options
Address the questions: Where can sails go? What level of technology is required?

Sailcraft trajectories are boundary value problems
and can be solved using numerical BVP-solving techniques

Shooting Collocation Finite-difference methods

Sun–Earth Halo orbits Interplanetary trajectories Lunar south pole coverage
Nuss (1998) Melton (2002) Wawrzyniak & Howell
A. McInnes (2000) Nassiri et al. (2005) (2009)

Offset SE Halo orbits Lunar south pole coverage
Waters & C. McInnes Ozimek, Grebow & Howell

(2007) (2008, 2009, 2009)
Farrés & Jorba (2010)

Levitated geostationary orbits
Baig & McInnes (2010)
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Can a sail solve the lunar south pole coverage problem?

Sailcraft in view of LSP (15◦ elev. constraint)
Earth and lunar gravity

No solar gravity, SRP only
Sun moves with respect to fixed Earth and Moon
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Shooting methods (a.k.a. differential correctors)
Develop analytical approximation, correct with (single) shooting
Fix attitude, only correcting path variables

a0: characteristic acceleration
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Use continuation to predict subsequent orbits in family
Characteristic acceleration ranges from 0.017 mm/s2 to 0.118 mm/s2

6



Continue to first eigenvalue bifurcation
Characteristic acceleration ranges from 0.12 mm/s2 to 1.59 mm/s2
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Finite-difference method
Simple, simple, simple

How it works:

I Guess a path and attitude profile

I Discretize guessed path

I Replace ai and vi in EOM at each epoch with central
difference approximations based on guessed path

I Iterate until path and variable attitude profile satisfy EOM

Why use it?
I Simple to understand and implement

I Path constraints easily included

I Reasonable local accuracy: O(∆t2)

I Millions of solutions available quickly
I Survey the design space, unveil new solutions

I To satisfy 15◦ elevation constraint, a0 > 1.5 mm/s2

8



Finite-difference method
Simple, simple, simple

How it works:

I Guess a path and attitude profile

I Discretize guessed path

I Replace ai and vi in EOM at each epoch with central
difference approximations based on guessed path

I Iterate until path and variable attitude profile satisfy EOM

Why use it?
I Simple to understand and implement

I Path constraints easily included

I Reasonable local accuracy: O(∆t2)

I Millions of solutions available quickly
I Survey the design space, unveil new solutions

I To satisfy 15◦ elevation constraint, a0 > 1.5 mm/s2

8



Example FDM solutions
Each meets 15◦ elevation constraint, a0 = 1.7 mm/s2

All orbits have periods of 29.5 days
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Bootstrapping: use FDM solution to initialize shooter
Start with reference orbit from FDM
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Bootstrapping: use FDM solution to initialize shooter
Propagate from 4 states along reference trajectory
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Bootstrapping: use FDM solution to initialize shooter
Correct until interior nodes are continuous

10



Bootstrapping: use FDM solution to initialize shooter
Solution resembles reference
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Collocation
Elegant, accurate, slightly more complicated

How it works:

I Discretize a guessed path and attitude profile
I Fit nth-degree polynomial in sub-arcs between nodes

I May require internal points, depending on n

I Compare EOM to derivative of polynomial at defect point(s)
between nodes

I Iterate until defects (∆1,2) are zero

Fourth-degree polynomial. . .
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Collocation
Elegant, accurate, slightly more complicated

Why use it?

I Can include path constraints

I Results in trajectory and attitude profile

I Accuracy improves as polynomial degree increases
n = 0, O(∆t1). n = 2, O(∆t3).
n = 3, O(∆t5). n = 4, O(∆t7).
n = 5, O(∆t9). n = 7, O(∆t13).
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Propagate states from collocation solutions
Ozimek et al. (2009) provide states and control laws for explicit integration from solution
using a 7th-degree polynomial and Gauss-Lobatto integration constraints

All orbits have periods of 29.5 days
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Summary of numerical tools
Different techniques useful at every level of mission design

Single shooting

I Uses knowledge of solution shape and dynamical properties

Multiple shooting

I Improved numerical stability

Finite-difference method

I Simple; allows crude initial guess

Collocation

I Variable accuracy; allows crude initial guess

Numerical methods

I Accuracy of solutions only as good as fidelity of model

I Yield input to higher-fidelity models

I Great starting point for understanding design space
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Conclusion

Add numerical methods to the
solar sail trajectory design toolbox

Thanks to the Dr. Gerald A. Soffen Memorial Fund for the Advancement of Space Science Education and
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